

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2008
2. REPORT TYPE

Conference Paper Postprint
3. DATES COVERED (From - To)

1-8 June 2008
4. TITLE AND SUBTITLE

ACCELERATING COGENT CONFABULATION: AN EXPLORATION IN
THE ARCHITECTURE DESIGN SPACE

5a. CONTRACT NUMBER
In-House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)

Qinru Qiu, Daniel Burns, Michael Moore, Richard Linderman, Thomas Renz,
and Qing Wu

5d. PROJECT NUMBER
231T

5e. TASK NUMBER
IN

5f. WORK UNIT NUMBER
HP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/RITB
525 Brooks Rd.
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITB
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2009-8

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited. PA# WPAFB-2007-0710

13. SUPPLEMENTARY NOTES
© 2008 IEEE World Congress on Computational Intelligence (WCCI) 1-8 June-2008 page(s): 1292-1300. Paper was published in
the Proceedings of the 2008 International Joint Conference on Neural Networks, (IJCNN). This work is copyrighted. One or more of
the authors is a U.S. Government employee working within the scope of their Government job; therefore, the U.S. Government is
joint owner of the work and has the right to copy, distribute, and use the work. All other rights are reserved by the copyright owner.
14. ABSTRACT
Cogent confabulation is a computation model that mimics the Hebbian learning, information storage, inter-relation of symbolic
concepts, and the recall operations of the brain. The model has been applied to cognitive processing of language, audio and visual
signals. This project focuses on how to accelerate the computation underlie confabulation based sentence completion through
software and hardware optimization. Software implementation with appropriate data structures can improve the performance of the
software by more than 5,000X. The cogent confabulation algorithm is an ideal candidate for parallel processing hardware and its
performance can be significantly improved with the help of application specific, massively parallel computing platforms. However,
as the complexity and parallelism of the hardware increases, cost also increases. Architectures with different performance-cost
tradeoffs are analyzed and compared. Our analysis shows that although increasing the number of processors or the size of memories
per processor can increase performance, the hardware cost and performance improvements do not always exhibit a linear relation.
Hardware configuration options must be carefully evaluated in order to achieve cost performance tradeoffs.
15. SUBJECT TERMS
Confabulation model, cognitive processing, accelerate confabulation, software optimization, hardware optimization.
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

10

19a. NAME OF RESPONSIBLE PERSON
Stanley Lis

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Abstract— Cogent confabulation is a computation model that
mimics the Hebbian learning, information storage,
inter-relation of symbolic concepts, and the recall operations of
the brain. The model has been applied to cognitive processing of
language, audio and visual signals. In this project, we focus on
how to accelerate the computation underlie confabulation based
sentence completion through software and hardware
optimization. On the software implementation side, appropriate
data structures can improve the performance of the software by
more than 5,000X. On the hardware implementation side, the
cogent confabulation algorithm is an ideal candidate for parallel
processing and its performance can be significantly improved
with the help of application specific, massively parallel
computing platforms. However, as the complexity and
parallelism of the hardware increases, cost also increases.
Architectures with different performance-cost tradeoffs are
analyzed and compared. Our analysis shows that although
increasing the number of processors or the size of memories per
processor can increase performance, the hardware cost and
performance improvements do not always exhibit a linear
relation. Hardware configuration options must be carefully
evaluated in order to achieve good cost performance tradeoffs.

I. INTRODUCTION
To build a machine with human intelligence has always been a

dream of computer scientists. During the last couple of decades,
many cognitive architectures have been proposed. Some are based
on explicit logic and expert rules, such as ACT-R [2] and SOAR.
Others are connectionist approaches, among which the most
dominant models use neural networks. Other recent work integrates
advances in neural science with artificial intelligence. In their book
[3] Hawkins and Blakesleee advocate that the construction of
cognitive architectures should be based on our present
understanding of brain function. The Ersatz Brain project [4] is an
example of neural science inspired cognitive architecture, which
models the brain as a network of cortical columns. Another neural
science inspired cognitive architecture is the cogent confabulation
model proposed by Hecht-Nielsen [1]. It seeks to mimic the Hebbian
learning, information storage, inter-relation of symbolic concepts,
and recall operations of the brain.

Most of the previous work on cognitive architectures focuses on
cognitive science. They assume that the training speed or the
response time of recall is not a concern. However, for any of the
above mentioned systems to perform a cognitive application that has
meaningful significance, a huge amount of data must be processed
quickly. It is estimated that a computer with 100 million megabytes
memory and 100 million MIPS may be able to match the human
brain [5]. Currently, such a requirement can not be achieved in a
uniprocessor system. Parallel processors with multi-core

architecture and distributed processing capability are the only
feasible solution [6].

This paper presents our research which explores the potential for
accelerating the computations that underlie cogent confabulation.
Our approach includes both software and hardware optimization.
First, we demonstrate the impact of different data structures on the
performance of the algorithm. Our experiments show that speedups
of more than 5,000X can be achieved by proper selection and tuning
of data structures. Then we investigate the potential of accelerating
the computations by parallel processing. Analysis shows that cogent
confabulation is an ideal candidate for parallel processing. As a
model that mimics the behavior of human brain, its computations
can be partitioned into small tasks and distributed to different
processing elements (PEs). During the analysis, we identified the
smallest unit tasks, and carried out extensive software profiling to
model and estimate computational complexity.

Although increasing the number of PEs or the size of their
memories can increase computational performance, it also increases
system cost. Cost and the performance improvements do not always
exhibit a linear relation, i.e. investing 1% more in hardware does not
lead to a 1% increase in computational speed. The best
implementation scheme should achieve a balance between cost and
performance. Given the same cognitive computing model, many
different hardware and software implementations are possible. Each
has an associated performance (i.e processing delay) and cost (i.e.
required resources, # gates, etc.). These implementations are
considered design points in the cost-performance space. A design
point is Pareto [7] if it has either less cost or lower delay than any
other points in the design space. Obviously, only Pareto design
points are relevant, and the main idea of architecture exploration is
to generate design points and identify those that are Pareto.

In this work, we evaluated various hardware configuration
options for implementing the training and recall systems of a single
sentence completion confabulation module, and we generated a set
of design points with different performance-cost tradeoffs. The
efficiency of different systems was measured and compared by
computing cost-delay-products.

Most of the previous work on performance optimization of
cognitive architectures focuses on hardware or software
implementation. For example, a hardware implementation of
spiking neural networks is proposed in reference [8]. Reference [9]
investigates the architecture design of a Brain-state-in-a-box model.
The authors of [10] propose software based optimization of
cognitive applications by exploiting their fault-tolerance and
noise-tolerance properties. To the best of our knowledge, the present
work is the first that studies both software and hardware
optimization, and considers performance optimization and hardware
cost at the same time.

The remainder of this paper is organized as follows: Section II
provides necessary background on cogent confabulation theory and
the sentence completion example. Section III presents different data
structures for software optimization and analyzes the computation

1Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902
2Air Force Research Laboratory, Rome Site, 525 Brooks Road, Rome, NY 13441
3ITT Advanced Engineering & Sciences, 775 Daedalian Drive, Rome, NY 13441

Qinru Qiu1, Daniel Burns2, Michael Moore3, Richard Linderman2, Thomas Renz2, Qing Wu1

Accelerating Cogent Confabulation: an Exploration in the
Architecture Design Space

POSTPRINT

complexity and the potential of parallel processing. The
cost-performance analysis of different architectures is presented in
Section IV. Conclusions are given in Section V.

II. BACKGROUND
Cogent confabulation is an emerging theory proposed by

Hecht-Nielsen. Based on the theory, the information processing of
human cognition is carried out by thousands of separate
thalamocortical modules. Each of these thalamocortical modules is a
patch of cerebral cortex plus a uniquely paired zone of thalamus and
is referred to as a lexicon or a feature attractor module. Different
collections of neurons in the thalamocortical module represent
different symbols. Knowledge is stored as the links between neurons
and their strength. The cognitive information process consists of two
steps: learning and recall. During the learning, the knowledge links
are established and strengthened as symbols are co-activated.
During recall, a neuron receives excitations from other activated
neurons. A “winner-take-all” strategy takes place within each
lexicon. Only the neurons (in a lexicon) that represent the winning
symbol will be activated, and the winning neurons activate other
neurons through knowledge links.

Figure 1 shows an example of lexicons, symbols and knowledge
links. The three columns in Figure 1 (a) represent three lexicons for
the concept of shape, object and color with each box representing a
neuron. Different combinations of neurons represent different
symbols. For example, as Figure 1 (b) shows, the pink neurons in
lexicon I represent a cylinder shape, the orange neurons in lexicon II
represent a fire extinguisher, while the red neurons in lexicon III
represent red color. During learning, if the information of a red
cylinder shaped fire extinguisher is repeatedly provided then the
links between these neurons will be strengthened. During recall, if
the neurons representing the fire extinguisher are activated, then
they will further excite the neurons that represent red color and
cylinder shape. If the excitation levels of these neurons are higher
than others, then the corresponding symbol will be activated.

Figure 1 Example of lexicons, symbols and knowledge links
A computation model for cogent confabulation is proposed in [1].

Based on this model, a lexicon is a collection of symbols. A
knowledge base (KB) from lexicon A to B is a matrix with the row
representing a source symbol in A and a column representing a target
symbol in B. The ijth entry of the matrix represents the strength of
the link between the source symbol si and the target symbol tj. It is
quantified as the conditional probability P(si | tj). The knowledge
bases are constructed during the learning procedure. During recall,
the excitation level of all symbols in each lexicon is evaluated. Let l
denote a lexicon, Tl denote the set of lexicons that have knowledge
bases going into lexicon l, and Sk denote the set of symbols that
belong to lexicon k. The excitation level of a symbol t in lexicon l
can be calculated as:

 ∑ ∑
∈ ∈

+=
lFk kS

BptsPsItI
s

0])/)|()[ln(()(, lSt ∈∀ . (1)

The function I(s) is the excitation level of the source symbol s.
Due to the “winner-takes-all” policy, the value of I(s) is either “1” or

“0”. The parameter p0 is the smallest meaningful value of P(si | tj).
The parameter B is a positive global constant called the bandgap. It
is introduced to ensure that a symbol receiving inputs from M active
knowledge links will always have a higher excitation level than a
symbol receiving (M-1) active knowledge links, regardless of the
strength of the links.

Based on the example provided in [1], prototype confabulation
based single sentence completion software has recently been
developed internally at AFRL/RITC [11]. A sentence is represented
using 40 lexicons that are arranged in 2 levels. The ith lexicon on
level 1 represents the word (or punctuation) in the ith location of a
sentence. There are 20 lexicons in level 1, and the words or
punctuations beyond the first 20 are discarded. The ith lexicon on
level 2 represents the phrase (consisting of one or more words) that
begins in the ith location of a sentence. The connections of
knowledge bases are “causal”. Within each level, each lexicon only
establishes knowledge bases with all lexicons to the right. The
lexicons in different levels are also connected with knowledge
bases. The ith lexicon in level 1 is connected to the jth lexicon in
level 2 where j ≤ i while the jth lexicon in level 2 is connected to the
ith lexicon in level 1 where i ≥ j. Figure 2 shows the lexicons and the
knowledge bases for the sentence completion problem.

Figure 2 Confabulation based sentence completion
Overall, there are 800 knowledge bases in the system. The

contents of the knowledge bases are learned by reading novels and
scientific papers that are stored on hard disk. The ultimate size of the
knowledge bases depends on the extent of training. Let N denote the
total number of unique words, phrases and punctuations in the
training corpus. Each lexicon is a collection of N symbols and each
knowledge base is potentially an N×N matrix. A medium sized
training file with 173,000 words generates about 60,000 symbols.
Extensive software profiling has been performed on this example
training file, which will be referred as the benchmark.

During learning, each sentence in the training corpus is read in
turn. As each sentence is read, each word/phrase is converted into a
unique ID based on its location in a master lexicon or dictionary.
Each entry in the knowledge base matrix is associated with two
symbols. Its row index corresponds to the ID of the source symbol
while its column index corresponds to the ID of the target symbol.
The knowledge base entry is incremented if the source and target
symbols appear in the sentence. At the end of the training, each entry
in a knowledge base gives the number of co-occurrences of the
corresponding source and target symbols.

After training, the conditional probability of the source and target

symbols P(s | t) is calculated as:
∑

=
i tikb

tskbtsP
]][[

]][[)|(, where kb[s][t]

represents the content of knowledge base matrix at row s and column
t.

During the recall, given one or more initial words the software is
able to generate meaningful sentences that may or may not be in the
training text. The starter words are first assigned to the
corresponding lexicons, and the excitation level of each symbol in
each lexicon is evaluated using equation (1). The symbols with the

0 1 2 3 4 5 6 19

20 21 22 23 24 25 26 29 Phrase Level

Word Level0 1 2 3 4 5 6 19

20 21 22 23 24 25 26 29 Phrase Level

Word Level

(a) A simple example with 3
lexicons and many knowledge links

ColorShape Object

Lexicon
I

Lexicon
II

Lexicon
III

ColorShape Object

Lexicon
I

Lexicon
II

Lexicon
III

(b) The pink, orange and red
neurons represent 3 symbols

REDRED

highest excitation are stored in the activation list. The procedure
repeats if the new activation list is different than the previous
activation list.

III. SOFTWARE OPTIMIZATION
A. Improving the data structure for the training function

A knowledge base is essentially an N×N matrix, where N is the
total number of possible words/phrases in the training file and it is
about 60,000 for a medium sized training file. Storing all knowledge
bases in memory without compression will be impossible. Our
experiments show that a knowledge base is a sparse matrix, with
about 500 ~ 9,000 nonempty rows and less than 5,000 non-zero
entries in those non-empty rows. Therefore, only 1.25% of a
knowledge base is non-zero. To compress the knowledge base, we
store only the non-zero entries. We optimized the data structure of
knowledge bases in a progressive way. Figure 3 shows the four data
structures that have been evaluated.

(a) List of arrays. List of arrays data structure is first used to
represent each knowledge base matrix. It consists of a source array
and a set of target arrays. Each entry in the source array corresponds
to a non-empty row in the matrix. It points to a target array which
stores the non-zero entries in that row. Figure 3 (a) shows the list of
array representation of a knowledge base (KB) matrix with 4
non-empty rows.

(b) Link-list. The list of arrays is not efficient for data insertion
and deletion. Each data insertion or deletion requires a memory
movement. We replace an array with a link-list. The resulting data
structure has one source link-list and a set of target link-lists. Figure
3 (b) shows the link-list representation of the previous example.
Compared with the list of arrays based implementation, the link-list
based data structure improves training speed by 200X times.

(c) Tree. To locate a knowledge base entry during the training, we
need to first find the corresponding row based on the source symbol
ID, and then find the corresponding column based on the target
symbol ID. The link-list based data structure is not efficient for data
search. We further improve the data structure by replacing each
link-list with a binary tree. The resulting data structure has one
source tree and a set of target trees for each knowledge base matrix.
An example of tree based representation is given in Figure 3 (c).
Compared with the link-list implementation, the tree based data
structure improves the training speed by 4X times.

Figure 3 Data structures for KB training
 (d) Merged trees. Close observation of Figure 2 shows that

several knowledge bases share the same source lexicon. Therefore,
their source tree can be merged to reduce storage and search time.
The resulting data structure has one source tree for each lexicon and
one target tree for each non-empty row in each knowledge base
matrix. Each source node points to an array of knowledge bases that

originate from the corresponding lexicon. Each entry of that array
points to a target tree. Figure 3 (d) shows the merged tree data
structure. Compared with the tree based data structure, the merged
tree based data structure provides a 7X speed up for training.

All of the above mentioned performance improvements were
obtained using our benchmark training file. Our experiments show
that the merged tree is the best data structure for training.

B. Software profiling
Software profiling was performed to determine the number and

size of the source and target trees (which set memory requirements),
and to measure the training speed of the sentence completion system
using the benchmark training file with 173,000 words. Table 1
summarizes the software profiling results. Figure 4 (a) and (b) shows
the probability distribution of the size of the source trees and target
trees, respectively.

Table 1 Summary of tree size
 #of

trees
Average
size

Max. size Min. size

Source 40 4026 nodes 8943 nodes 510 nodes
Target 2.78 ×

106
3 nodes 4216 nodes 1 nodes

Figure 4 Probability distribution of source and target trees

C. Improving data structure for the recall function

During the recall, a partial sentence is input to the system, the
excitation levels of all symbols in all lexicons are calculated, and the
symbols with the maximum excitations are activated.

Figure 5 A simplified example of recall
Figure 5 shows a simplified example of the recall. Three lexicons

(0, 1, and 2) and two knowledge bases (KB2 and KB20) are
considered. Each lexicon is a collection of 5 symbols and the
knowledge bases are 5×5 matrices. The knowledge bases store the
values BptsP +)/)|(ln(0 with B equal to 100. The contents of
KB2 and KB20 are given in Figure 5 (b). Initially, the first symbol in

Source tree Target tree

(c) Tree representation

Source tree Target tree

(c) Tree representation

Target array

(a) List of array representation

Target array

(a) List of array representation
(a) The calculation of the excitation level

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000101102
010400121

1010000
117001020

0001070

20KB

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000101102
010400121

1010000
117001020

0001070

20KB

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000104
101104000
1010000

010500111
01210102101

2KB

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000104
101104000
1010000

010500111
01210102101

2KB

(b) Knowledge bases KB2 and KB20

(b) Link-list representaiton

So
ur

ce
 li

st

Target list

(b) Link-list representaiton

So
ur

ce
 li

st

Target list

kbx kby kbz

Source tree
Multiple Target Trees

kb1 kb2 kb3

(d) Merged Tree representation

kbx kby kbz

Source tree
Multiple Target Trees

kb1 kb2 kb3

(d) Merged Tree representation

0
0.2
0.4
0.6
0.8
1

1.2

48
4.2
13

35
.6
22

26
31

16
.4
40

06
.8
48

97
.2
57

87
.6
66

78
75

68
.4
84

58
.8

Prob(s_tree_size<X)

(a) Probability distribution of source tree

0
0.2
0.4
0.6
0.8
1

1.2

48
4.2
13

35
.6
22

26
31

16
.4
40

06
.8
48

97
.2
57

87
.6
66

78
75

68
.4
84

58
.8

Prob(s_tree_size<X)

(a) Probability distribution of source tree (b) Probability distribution of target tree

0.5
0.6
0.7
0.8
0.9

1
1.1

1 10 100 1000

Prob(t_tree_size<X)

(b) Probability distribution of target tree

0.5
0.6
0.7
0.8
0.9

1
1.1

1 10 100 1000

Prob(t_tree_size<X)

P_E2

101 102 00 121

N_E2

0 0 1010 0

0 102 218

EL

0 0

P_E20

0 102 1170 0101 204 117

EL

0 121

0 1 2

KB2

KB20

EL = EL – P_E2 + N_E2

P_E2

101 102 00 121

N_E2

0 0 1010 0

0 102 218

EL

0 0

P_E20

0 102 1170 0101 204 117

EL

0 121

00 11 22

KB2

KB20

EL = EL – P_E2 + N_E2

lexicon 0 and the second symbol in lexicon 1 are activated.
Therefore, the excitation levels of the 5 symbols in lexicon 2 are
calculated as the summation of the first row in KB2 and the second
row in KB20. The result is a vector called Excitation Level (EL) and
in this example, EL is [101, 204, 0, 121, 117]. Assume that later the
first symbol of lexicon 0 is deactivated, and the third symbol is
activated. The two vectors in the first and second rows of KB2 and
KB20 are referred as Previous Excitation vectors (P_Ei) while the
vector in the third row of KB2 is referred as the New Excitation
vector (N_Ei). The subscript indicates the index of the knowledge
base. The EL vector should be updated as EL - P_E2 + N_E2.

The example shows that, for a given activated source symbol, all
entries in the corresponding row of a knowledge base must be
visited. However, a tree is not efficient for data traversal. The
knowledge base matrices are constant during recall, i.e. no data
insertion or deletion is performed. Therefore, it is more efficient to
replace each target tree in the merged tree data structure with a target
array. We refer this data structure as merged tree with target array.
An example of a knowledge base that is represented in this data
structure is given in Figure 6.

Figure 6 Data structures for Recall
The previous analysis shows that it will be more efficient if

training and recall are implemented using different data structures.
This would require a special process to convert the knowledge base
representation after training. The drawback of doing this is that two
representations of the knowledge bases must be maintained at the
same time, and that new knowledge cannot be used as soon as it is
learned, but only after a process updates the recall knowledge bases.
D. software analysis
i) Training complexity

Figure 7 shows a flow diagram of the training function using the
merged tree data structure. It is a repeated procedure consisting of
the following steps. At the beginning, a sentence is read in. All the
words and phrases in the sentence are converted into their unique ID
and assigned to the corresponding lexicons. For each lexicon, the
associated source tree is searched to locate the source symbol.
Overall, there are 40 lexicons and hence up to 40 source trees will be
searched, depending on the length of the sentence. After that, based
on the target symbol ID, all target trees that were pointed to by the
source nodes are searched and the value of the corresponding
knowledge base entry will be incremented. Because there are 800
knowledge bases, up to 800 target trees will be searched. If any of
the tree searches returns an empty pointer (i.e. the symbol is not
found), a node is created and appended to the end of the tree. This
procedure repeats until the entire training file has been processed.
(This description is simplified, as the process actually involves
counts bases on various source and destination word positions and
phrase lengths). The computation complexity is determined by the
size of source and target trees. Assume that all trees are balanced.
Let avg_ns and avg_nt denote the average size of source tree and
target tree respectively. During a tree search, 3 operations are
required to access a tree node: (1) read the value of the node, (2)
compare the value, and (3) read the address of child node. Therefore,
each training iteration has an average of

3)_log(8003)_log(40 ⋅⋅+⋅⋅ ts navgnavg operations. Given a
conventional sequential processor, one operation takes at least one

clock cycle. For our benchmark training file, where avg_ns = 4026
and avg_nt = 3, the sequential processing of one iteration in the
training function takes 5240 clock cycles.

Figure 7 Flow diagram of the training function
ii) Recall complexity

Figure 8 shows the flow diagram of the recall. In the first step, if a
new symbol is activated in lexicon l, then its location i is found by
searching the source array associated with lexicon l. Let KBll’ denote
a knowledge base that connects the lexicon l to lexicon l’. In the
second step, the ith row of each KBll’ is copied to the new excitation
vector (N_Ell’). In the last step, all the new excitation vectors that
have been updated during this iteration are added and all the
corresponding previous excitation vectors are subtracted to calculate
the new EL. Then the symbol with the maximum EL is found.

Figure 8 Flow diagram of the recall function
Assume that half of the knowledge bases have a new source

symbol being activated. The first step consists of 20 source tree
searches which require 3)_log(20 ⋅⋅ snavg operations. In average,
these 20 lexicons connect to 400 knowledge bases. Hence, 400 new
excitation vectors will be copied in the second step. This
corresponds to 400 * avg_nt operations. Based on our previous
assumption, about half of the knowledge bases that go into a lexicon
update their excitation. Therefore, in step 3, about 400 N_E vectors
must be added to and the same number of P_E vectors must be
subtracted from the EL. This corresponds to 2_400 ⋅⋅ tnavg
operations. Further more, for each of the 40 EL vectors, the
maximum value must be found, which takes 2/_40 snavg⋅
operations. Overall, one recall iteration consists of

sts navgnavgnavg _20_1200)_log(60 ⋅+⋅+⋅ operations. For the
benchmark training file where avg_nt=3 and avg_ns=4026, it takes
84,838 cycles to process one recall iteration sequentially.

Read Read
Sentence Sentence

String2IDString2ID

Search Source Search Source
tree of tree of LL11

Search Source Search Source
tree tree tree tree LL4040

Search target Search target
tree in tree in kb1kb1

Search target Search target
tree in tree in kbnkbn

Search target tree Search target tree
in in kbikbi

Search target tree Search target tree
in in kbjkbj

40 lexicons

All kbs
connected

to L1

All kbs
connected

to L40

All kbs
connected

to L40

RepeatRepeat

800
kbs

If a new symbol If a new symbol αα is is
activated in lexicon 1activated in lexicon 1

Calculate the excitation level and Calculate the excitation level and
find the maximum for lexicon 1 find the maximum for lexicon 1

40 lexicons

Locate the symbol in the Locate the symbol in the
source treesource tree

If a new symbol If a new symbol ββ is is
activated in lexicon 40activated in lexicon 40

Locate the symbol in the Locate the symbol in the
source treesource tree

Copy the KBCopy the KB11
row vector to row vector to

N_EN_E11

Copy the KB Copy the KB
row vector to row vector to

N_EN_Enn

Copy the KB Copy the KB
row vector to row vector to

N_EN_Eii

Copy the KB Copy the KB
row vector to row vector to

N_EN_Ejj

800 KBs

40 lexicons

Repeat

Calculate the excitation level and Calculate the excitation level and
find the maximum for lexicon 1 find the maximum for lexicon 1

If a new symbol If a new symbol αα is is
activated in lexicon 1activated in lexicon 1

Calculate the excitation level and Calculate the excitation level and
find the maximum for lexicon 1 find the maximum for lexicon 1

40 lexicons

Locate the symbol in the Locate the symbol in the
source treesource tree

If a new symbol If a new symbol ββ is is
activated in lexicon 40activated in lexicon 40

Locate the symbol in the Locate the symbol in the
source treesource tree

Copy the KBCopy the KB11
row vector to row vector to

N_EN_E11

Copy the KB Copy the KB
row vector to row vector to

N_EN_Enn

Copy the KB Copy the KB
row vector to row vector to

N_EN_Eii

Copy the KB Copy the KB
row vector to row vector to

N_EN_Ejj

800 KBs

40 lexicons

Repeat

Calculate the excitation level and Calculate the excitation level and
find the maximum for lexicon 1 find the maximum for lexicon 1

Calculate the excitation level and Calculate the excitation level and
find the maximum for lexicon 1 find the maximum for lexicon 1

kbx kby kbzSource tree

Multiple
Target
arrays

kb1 kb2 kb3

kbx kby kbzSource tree

Multiple
Target
arrays

kb1 kb2 kb3

E. Parallel processing in cogent confabulation
As a computation model that is inspired by the neurobiological

architectures of the human neocortex, cogent confabulation is an
ideal candidate for parallel processing.

Before presenting the parallel model of cogent confabulation, we
introduce the concept of an atomic task. An atomic task is a
sequence of operations which must be applied to the same storage
elements. Therefore, these operations cannot be parallelized. Two
atomic tasks communicate with each other only at the beginning or
end of a process. An atomic task is triggered by another atomic task
and it may further trigger other atomic tasks.

Based on the definition, the source tree search (S-search)
processes and the target tree search (T-search) processes are 2 types
of atomic tasks in the training function. The T-search processes are
triggered by the completion of S-search process. The recall function
consists of 3 types of atomic tasks. They are: source tree search, N_E
vector generation, and EL vectors calculation.

Atomic tasks of the same type are independent of each other and
can be made parallel. For example, during training, up to 40
S-search tasks or 800 T-search tasks can run, simultaneously. The
parallel nature of the model can be explored for performance
enhancement if provided with appropriate computing hardware.

IV. ARCHITECTURE EXPLORATION
Computation hardware that is able to provide the maximum

achievable performance for cogent confabulation should have large
number of processing elements (PEs) so that all atomic tasks that
belong to the same type can run in parallel. Special hardware such as
the content addressable memory (CAM) can also be used to improve
the performance. However, multiple PEs and special hardware
increase the cost of the system. Cost and performance often exhibit
non-linear relationships. Careful decisions must be made to in order
to find the best tradeoff between cost and performance. In this
section, we provide a cost-performance analysis of various hardware
architectures designed for confabulation based single sentence
completion.
A. Hardware acceleration of the training function
i) Hardware requirements for best achievable performance

The best performance of the training function can be achieved if
all atomic tasks that belong to the same type can be made parallel
and if each atomic task can be finished in minimum time. The
minimum time of S-search and T-search is 2 clock cycles, given the
condition that the PEs have large enough CAMs so that the tree
search can be finished in 1 clock cycle. For an S-search task, the
second cycle is used to trigger the T-search task, while for a
T-search task the second cycle is used to update the knowledge base
entries. Since the S-search task and its succeeding T-search tasks
may very well be mapped onto different PEs, communication
latency to pass the triggering event also needs to be considered.
However, this can be compensated a little bit by latency hiding
techniques such as double buffering. For the best possible
performance, we assume that inter-PE communication takes 1 clock
cycle. Overall, the best achievable performance for the training
function is 2+1+2 = 5 clock cycles.

Architecture (1) Different architectures are able to deliver the
best achievable performance. Among them, the most cost efficient
system has 840 PEs so that the 40 S-search tasks and 800 T-search
tasks can be made parallel. Target trees that belong to the same KB
will not be accessed in the same iteration and will be stored on the
same PE.

Each PE has a CAM and a RAM. An n×m CAM is able to store n
words whose width is m bits. When presented with an m bit input,
the CAM gives an n bit output. A “1” at the ith location of the output
indicates that the ith data in the CAM matches the input data. Figure

9 (a) gives an example of a 5×9 bit CAM. When the input is
“111111110”, which matches the contents in location 1 and 4, the
output of the CAM is “10010”.

Figure 9 CAM and TLB
When all target trees that belong to the same KB matrix are mixed

together and stored in the same CAM, if a matching location is found,
a TLB (Table Lookup Buffer) is used to determine whether this
location belongs to the target tree of interest. Each entry of the TLB
corresponds to a target tree. Each bit of a TLB entry corresponds to a
location in the CAM. If the jth bit of the ith TLB entry is “1”, then
the jth CAM location stores a symbol that belongs to the ith target
tree. For example, Figure 9 (b) shows the CAM and the TLB of a
knowledge base that has 4 target trees (i.e. the knowledge base
matrix has 4 non-empty rows.) To search whether symbol
“111111110” is in target tree 3, the symbol ID goes to the CAM
while the target tree ID goes to the TLB. Since location 1 and 4 in the
CAM match the input, the CAM output is “10010”. The address 3 of
the TLB stores the value “00010”, which indicates that target tree 3
has only one symbol and it is stored in CAM location 3. If a bit wise
AND operation on the CAM output and TLB output returns a
non-zero result, then the symbol is in the target tree. The location of
the “1” in the result gives the address of the target symbol. The
length and the width of the TLB are determined by the maximum
number of target trees and the length of the CAM respectively.

Besides CAM and TLB, a RAM is used to store the pointers or the
values of KB entries. Each data entry in the CAM has a
corresponding data entry in the RAM.

Using the source and target tree statistics from the benchmark
training file, the hardware cost of architecture (1) is estimated and
provided in Table 2. Compared to the sequential process, this
architecture provides about a 1048X speedup.

Table 2 Hardware requirement of Architecture (1)
#PEs CAM per PE RAM per PE TLB per PE

Length Width Length Width Length Width
840 38K 18bit 38K 32 bit 9K 38 Kb

ii) Performance cost tradeoffs

Architecture (1) in the previous section is very expensive because
it requires huge number of PEs and each PE must have large amount
of memory. In this section we consider lowering the hardware cost
by removing certain components, and evaluate the effect on
performance. The resulting hardware configurations are not able to
provide the best achievable performance; however, they are less
expensive.

Architecture (2) For the same storage capacity, a CAM is about
4~5 times larger than a RAM. Therefore, our first option is to reduce
the size of the CAM. The system has 840 PEs and a smaller CAM for
each PE. The CAM is only large enough to store one source tree.
The target trees are stored in the RAM.

Given such system, an S-search task still takes 2 cycles. The
system cannot proceed to the next iteration until all of the 800

110110001
111111110
101110101
101110001
11111110

11
11

11
11

0

10
01

0

(a) A 5X9 bit CAM

110110001
111111110
101110101
101110001
11111110

11
11

11
11

0

10
01

0

110110001
111111110
101110101
101110001
11111110

11
11

11
11

0

10
01

0

(a) A 5X9 bit CAM

110110001
111111110
101110101
101110001
11111110

11
11

11
11

0

10010

10001
01000
00101
00010

3
Tree ID

00010

00010

(b) Target tree search

TLB
CAM

110110001
111111110
101110101
101110001
11111110

11
11

11
11

0

10010

10001
01000
00101
00010

10001
01000
00101
00010

3
Tree ID

00010

00010

(b) Target tree search

TLB
CAM

T-search tasks finish. Therefore, the performance is bounded by the
slowest one among the 800 tasks. This is determined by the size of
the largest tree among 800 randomly selected target trees. Assuming
that special hardware is available to pre-fetch the address of the next
node during tree search, it takes 2 cycles to visit each node. The
average time to finish all of the 800 T-search tasks is

max800avg _log2 2⋅ cycles, where avg_max800 is the expected
size of the largest target tree among the 800 random samples.

Figure 10 Probability distribution of avg_max800
As an example, Figure 10 shows the probability distribution of

the size of the largest tree among 800 random samples generated
from the benchmark training file. Although the majority of target
trees are very small, among 800 random samples, the probability
that the largest tree has less than 200 nodes is less than 0.1. The
expected size of the largest tree among 800 random samples is 563.
The average time to finish all of the 800 T-search tasks is

18563log2 2 =⋅ cycles. Overall, one training iteration takes 21
cycles. Compared to the sequential processing which takes 5240
cycles per iteration, the speed up is about 250X.

Table 3 Hardware cost and performance of architecture (2)

The length of the CAM is determined by the largest source tree.

Each entry in the CAM must have a corresponding word in the RAM.
Besides this, the RAM is also used to store all the target trees. Each
tree node is associated with 4 data. They are: {symbol ID, address of
the left child, address of the right child, entry in knowledge base
matrix}. Therefore, the length of the RAM must be greater than
max(max_ns, 4⋅max_nt), where max_ns is the size of the largest
source tree and max_nt is the maximum number of target nodes in
one KB. Finally, because the CAM is not shared among different
source trees or target trees, the TLB is not needed. The second row
in Table 3 summarizes the hardware requirements and performance
for architecture (2). In the third row of Table 3, we replace the
variables such as avg_max800, max_ns, and max_nt with the data
that are collected from the benchmark training file and give the
estimation of the performance and hardware cost.

Architecture (3) We can further reduce the size of the CAM.
When the length of the CAM is less than max_ns, some source trees
cannot be fit into the CAM entirely. The source tree symbols that
enter the system earlier will be stored in the CAM. Software
profiling shows that the symbols that enter the system earlier have
higher probabilities of being visited in the future. Figure 11 shows
the relation between the entering order of a symbol and the number
of times it has been accessed. Each blue dot in the plot represents a
symbol in the source trees. A symbol that enters the system earlier
has a lower entering order. The plot shows that symbols with lower
entering order will be accessed more frequently. The symbol access

frequency is almost inversely proportional to its entering order. The
relation can be approximated by the function Access_Times =
1600/Enter_Order, which is the magenta curve in the plot. The
observation indicates that the CAM hit ratio will be greater than the
CAM storage ratio.

Figure 11 The nodes that enter the system earlier have higher

possibility to be visited
If there is a CAM hit (i.e. the target symbol is located in the

CAM), then the processing time of the S-search task is 2 cycles.
Otherwise, the rest of the source trees must be searched and the
system performance is bounded by the search time of the largest
source tree. If all symbols have an equal probability of being visited,
the expected processing time of the S-search task can be calculated
as

)(max_log)max_/1(2max_/2 21 XnnXnXT sss −−+= , where
X is the size of the CAM. Similar to previous discussions, we assume
that special hardware is available to pre-fetch the address of the next
node, so that each node access takes 2 cycles. The expected time for
T-search tasks is max800avg _log2 2⋅ cycles. Figure 12 (a) gives
the relation between processing time and the CAM capacity of a
system that is capable of processing the benchmark training file, for
which max_ns = 8943 and avg_max800 = 563.

Figure 12 Performance estimation
The above analysis is a pessimistic estimation of the system

performance. Since the CAM hit ratio is higher than the CAM
storage ratio, the actual probability that a symbol is located in the
CAM is greater than snX max_/ . Assuming that the relation
between the number of times a symbol is accessed and its entering
order follows the function y=1600/x, and using the profiled statistics,
the relation between the process time and the size of CAM is derived
and presented in Figure 12 (b). As we can see, increasing the CAM
from 1 to 1500 entries can reduce the processing time from 31 to 24.
After that the latency reduction slows down. Since the rest of the
source tree must the stored in the RAM, the length of the RAM must
be greater than max(max_ns + 3×(max_ns – X), 4×max_nt).

Architecture (4) Reducing the number of PEs can also lower the
system cost. Assume that the system has P processing elements.
When P < 840, there will be PEs shared by several atomic tasks.
Depending on the value of P, the resource sharing can be
categorized into 3 types.

 Performance
(cycles)

CAM
size

RAM size #
PE
s

General 3+2log2avg_max
800

max_ns Max(max_ns,4⋅max_
nt)

84
0

Bench 21 9K 152K 84
0

(a) Process time v.s. CAM size
when all symbols have equal access

probability

(b) Process time v.s. CAM size
when early symbols have higher
probabilities of being accessed

0
0.2
0.4
0.6
0.8

1

1 10 100 1000

prob(max_800)

0
0.2
0.4
0.6
0.8

1

1 10 100 1000

prob(max_800)

10

20

30

40

50

0 2000 4000 6000 8000 10000X

C
yc

le
s

10

20

30

40

50

0 2000 4000 6000 8000 10000X

C
yc

le
s

15

20

25

30

35

0 2000 4000 6000 8000 10000
X

C
yc

le
s

15

20

25

30

35

0 2000 4000 6000 8000 10000
X

C
yc

le
s

(6a) 840800 <≤ P : Some S-search tasks will be mapped to the
same PE as the T-search tasks. Such resource sharing will not impact
the performance; however, this requires that each PE be equipped
with more memory. Let X denote the size of CAM for each PE, the
size of the local RAM of a PE is calculated as: max_ns + 3×(max_ns
– X)+4×max_nt.

(6b) 80040 <≤ P : T-search tasks that are not mutually
exclusive are mapped to the same PE. Therefore, the latency of step
2 of the training function increases.

The average target tree sizes are different for different KBs.
Figure 13 shows the profiled information obtained from the
benchmark training file. It shows that the KBs that go from level 1
lexicons to level 2 lexicons usually have larger target trees, while the
KBs going from level 2 lexicons to level 1 lexicons usually have
smaller target trees. In order to maintain a balanced workload among
all PEs, the summation of the average tree size of the KBs assigned
to the same PE must be approximately equal.

Figure 13 Average size of the target trees for different KBs
(6c) 40<P : Different Type I tasks must share the same PE.

Figure 14 gives the profiled information for the size of 40 source
trees obtained from the benchmark training file. It shows that the
source trees associated with the level 1 lexicons are relatively
smaller than the source trees associated with the level 2 lexicons.
Again the mapping between source trees and PEs must be designed
carefully so that the workloads for different PEs are balanced.

Figure 14 The size of 40 source trees.
Using the benchmark training file as an example, we vary the

number of PEs as well as the size of CAM per PE and obtained a set
of 73 design points in the cost and performance space. During the
analysis, we assumed that the each processor has 1 unit area (i.e 1
unit cost), which is also the area of a 1MB RAM. The CAM is 4
times larger than a RAM with the same capacity. Note that changing
the relative size of PE, RAM and CAM will change the results of the
following analysis.

Figure 15 Cost-performance analysis for the training system.

Figure 15 (a) shows design points for 73 different hardware
configurations in the performance cost space. The X axis represents
the hardware cost and the Y axis represents the speedup compared
with the sequential process. As we can see, varying the number of
PEs gives a larger impact on the cost performance trade off than
merely varying the CAM size. A hardware system with more PEs
but a smaller CAM for each PE has lower performance and higher
cost than a hardware system with less PEs but a larger CAM for each
PE. The cost-performance point for the two extreme hardware
configurations, i.e. single PE without CAM and 840 PEs with
unlimited CAM (i.e. Architecture (1)) are not shown in the plot. The
former has 35 units of hardware cost and 1X speedup while the latter
has 37,098 units of hardware cost and 1048X speedup.

Figure 15 (b) shows the delay-cost-product (DCP) for different
configurations. A lower DCP indicates more efficient hardware. As
we can see, increasing the CAM size improves the hardware
efficiency. Again, the DCP of the two extreme cases are not shown
in the figure. The DCP of a single PE sequential processor is
185,493 while the DCP of the optimal performance hardware is
184,679. It is interesting to note that the DCP of these two extreme
cases are very close and they are much higher than the DCPs of the
other configurations.

B. Hardware acceleration of the recall function
i) Hardware requirements for best achievable performance

For a lexicon i, let F(i) denote the set of lexicons that connect to
knowledge bases coming out from i and T(i) denote the set of
lexicons that connect to knowledge bases going into i. The recall
system has 40 PEs. Each PE is associated with a lexicon i. It
performs three major tasks: (1) receives newly excited source
symbols from PEs associated with lexicons j, j∈T(i), (2) calculates
the EL vector and finds the symbol with highest excitation, and (3)
sends the symbol with highest excitation to other PEs associated
with lexicon k, where k∈F(i), if the symbol is different from the
previous one. To calculate the EL vector, the PE performs the
following 3 steps: (1) reads the N_E/P_E vectors, (2) calculates the
EL vectors, and (3) searches EL vector to find the highest excited
symbol.

To achieve the highest performance, special hardware is used to
pipeline the operations. Figure 16 (a) shows the hardware block
diagram of a PE. The hardware has 2 memory blocks: KB_RAM and
P_E_array.

The KB_RAM stores all the knowledge bases that go into this
lexicon. Each storage element in the RAM consists of two fields, the
value of the knowledge base element and the corresponding column
index. To achieve the highest performance, each row of the
KB_RAM stores one non-empty row of the KB. When a row is read
out, based on the column ID, the KB elements are copied into the
corresponding locations in the N_E vector. Figure 16 (b) shows how
data is stored in the KB_RAM and how it is copied into the N_E
vector. A KB_RAM has ∑ ∈)(_iTj jiKBrownum rows, where

jiKBrownum _ represents the number of non-empty rows in the

knowledge base that goes from j to i. Each row of the KB_RAM has
)(max)(jiKBiTj nmax_row_le∈ elements, where

jiKBnmax_row_le is the length of the longest non-empty row in

the knowledge base that goes from j to i, and each element has 3
bytes. Each row in the P_E_array is associated with a knowledge
base KBji, where j∈T(i), and it stores the previous excitation vector
(P_E) of the corresponding knowledge base.

Each PE has an input array that stores the newly excited source
symbol from other lexicons. Each entry in the input array has two

(a) Cost vs. speedups

Level 2
Lexicons

Level 1
Lexicons 0

2000
4000
6000
8000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40
Lexicon ID

Stree size
Level 2
Lexicons

Level 1
Lexicons 0

2000
4000
6000
8000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40
Lexicon ID

Stree size

KBs from level 1 to
level 2

KBs from level 2 to
level 1

0

2

4

6

8
10

1 64 127 190 253 316 379 442 505 568 631 694 757

KB ID

Average Ttree Size KBs from level 1 to
level 2

KBs from level 2 to
level 1

0

2

4

6

8
10

1 64 127 190 253 316 379 442 505 568 631 694 757

KB ID

Average Ttree Size

0
50

100
150
200
250
300

0 500 1000 1500
Hardware cost

sp
ee

du
ps

PE=840 PE=800
PE=600 PE=300
PE=100 PE=40
PE=20

Increasing
CAM

0
50

100
150
200
250
300

0 500 1000 1500
Hardware cost

sp
ee

du
ps

PE=840 PE=800
PE=600 PE=300
PE=100 PE=40
PE=20

Increasing
CAM

2e+4

4e+4

6e+4

8e+4

0 200 400 600 800 1000
Hardware cost

de
la

y-
co

st
-p

ro
du

ct

#PE=840 #PE=800
#PE=600 #PE=300
#PE=100 #PE=40
#PE=20

Increasing CAM

2e+4

4e+4

6e+4

8e+4

0 200 400 600 800 1000
Hardware cost

de
la

y-
co

st
-p

ro
du

ct

#PE=840 #PE=800
#PE=600 #PE=300
#PE=100 #PE=40
#PE=20

Increasing CAM

(b) Hardware efficiency

fields: the knowledge ID (KB ID) and the symbol ID. Based on this
information the corresponding row in the KB_RAM is read out and
copied into the N_E. Address translation is necessary. However,
since the size of the knowledge bases are fixed, the address
translation can be implemented using combinational circuits. Based
on the KB ID, the P_E vector is read out from the P_E_array. Vector
addition and subtraction is performed on EL, N_E and P_E and the
result is written back to EL. The addition and subtraction is chained
and can be completed in one clock cycle. The two operations, i.e
P_E/N_E read and EL calculation are pipelined. The throughput of
the pipeline is 1 vector per clock cycle.

Figure 16 Hardware block diagram of PE for recall function
To find the maximum value of the EL in short time, a comparator

tree is used. Figure 16 (c) shows the comparator tree. The tree has
max_row2log levels, where max_row is the maximum number of

non-empty rows in all knowledge bases. There are max_row-1
comparison operations in the tree. It takes
⎡ ⎤clkcomp Ttrow×max_log2 cycles to complete the search, where
Tclk is the clock period and tcomp is the delay of a comparator. Because
the comparison operations in different levels are mutually exclusive,
they can share the same hardware comparator. Therefore, each PE
has max_row/2 comparators.

Assume that the inter-PE communication takes only 1 clock
cycle. Because in average there are 20 KBs that will have an updated
source symbol, to read out N_E/P_E and calculate EL takes 20+1
cycles. The last cycle is to flush out the pipeline. The time to find the
maximum value in EL is ⎡ ⎤clkcomp Ttrow×max_log2 cycles.
Overall, one recall iteration takes

⎡ ⎤clkcomp Ttrow×+ max_log22 2 cycles.
When the PEs are homogeneous, the size of the RAM and

P_E_array should be set to consider the worst case scenario. For a
recall system that is based on the knowledge learned from the
benchmark training file, the minimum size of the KB_RAM is
217,000×27,000=5.8G byte and the minimum size of the P_E_array
is 40×9K=360K byte. It requires 4,500 8-bit comparators and 18,000
8-bit adders. Assume that the Tcomp is 1ns while the Tclk is 2ns, with
the above mentioned PE configuration, each iteration takes 29
cycles. Compared to the sequential implementation, the speedup is
2924X.

ii) Cost performance tradeoff
The above configuration is very expensive because the width of

the KB_RAM is bounded by the longest row in KB and each PE
must be equipped with 5.8GB memory. We reduce the width of
KB_RAM to W bytes, where

)(max3)(jiKBiTj nmax_row_leW ∈×< . For those KB rows

with more than W/3 non-zero values, we wrap them around and store
them in multiple RAM entries. For example, in Figure 16 (d), row 3
is wrapped around and occupies 2 RAM entries. This reduces the
wasted storage space, however at a cost of increased latency.
Multiple reads are required to fetch some of the long rows.

Figure 17 Reducing the width of KB_RAM increases the N_E

vector read time
Using the benchmark training file as an example, Figure 17 shows

the probability distribution of the number of cycles needed to read
an N_E vector when the width of the KB_RAM is 15B, 6B and 3B. It
shows that 85% of the N_E reads take only 1 cycle when the width of
the KB_RAM is 15 bytes. When the width is 3 bytes (i.e. each row
only stores one KB element), only 58% of the N_E reads take 1
cycle. Based on this information, we can derive the average read
time of the N_E vector. When the width of the KB_RAM is 15 bytes
the average time to read out an N_E vector is 1.2 cycles. If the width
reduces to 6 bytes then the time increases to 2.3 cycles. If the width
of the KB_RAM is 3 bytes then the average read takes 3.3 cycles.
The performance of system is bounded by the latency of the PE that
represents the lexicon with the largest number of input knowledge
bases. The slowest PE must read and process 20 N_E vectors. Based
on the law of large numbers, the expected processing time can be
calculated as 20×cycleavg, where cycleavg is the average number of
cycles to read an N_E vector. Let lineavg denote the average number
of RAM lines occupied by an N_E vector, avgavg cycleline = .

The length of the KB_RAM can be calculated
as ∑ ∈×)()(#iTj jiKBavg rowsline , where jiKBrows# represents the

number of non-empty rows in the knowledge base from lexicon j to
lexicon i.

Reducing the width of the KB_RAM to W bytes also reduces the
number of required adders. Since we only need enough adders to
process the data that are read out from the memory, only 2/3*W
adders are needed.

To reduce the hardware cost, we can also decrease the number of
comparators. Assume that there are V comparators in each PE, the
latency of the comparison is approximately estimated

as)12(7 2logmax_2log −+ − Vrow .
Using the information obtained from the benchmark training file,

we can analyze cost-performance tradeoffs for the recall system.
Assume that each 1MB RAM has 1 unit area, which is also the area
of 100 8-bit adders or comparators. By varying the value of V (i.e.
the number of comparators) from 4500 to 1 and varying the value of
W (i.e. the capacity of the KB_RAM) we obtain a set of design
points. Figure 18 (a) shows where the design points fall in the
performance cost space. The X axis gives the hardware cost and the
Y axis gives the speed up over sequential processing. The cost is

(a) Hardware block diagram

<=
<=

<=
<=

<=
<=

<=

<=
<=

<=
<=

<=
<=

<=

(c) Comparator
(d) Reducing the

width of KB_RAM

Prob(#mem reads < X)

Number of Memory Reads

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Width =3B
Width=6B
Width=15B

Prob(#mem reads < X)

Number of Memory Reads

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Width =3B
Width=6B
Width=15B

(b) Data storage in
RAM

New excitation
symbol

Triggering event

KB_RAM KB_RAM
KB ID

N_E

A
dd

re
ss

Tr

an
sl

at
io

n

A
dd

re
ss

Tr

an
sl

at
io

n

+

-

MAX

EL

<=

P_EKB ID

P_E_array

s j
s i

s1
K

B
 j

K
B

 i
K

B
 1 Symbol ID

old excitation
symbol

New excitation
symbol

Triggering event

KB_RAM KB_RAM
KB ID

N_E

A
dd

re
ss

Tr

an
sl

at
io

n

A
dd

re
ss

Tr

an
sl

at
io

n

+

-

MAX

EL

<=

P_EKB ID

P_E_array

s j
s i

s1
K

B
 j

K
B

 i
K

B
 1 Symbol ID

old excitation
symbol

KB_RAM

KB1

KB2

kb valuekb value Col IDCol ID

1B 2B

N_E

KB_RAM

KB1

KB2

kb valuekb value Col IDCol ID

1B 2B

N_E

KB_RAM

KB1

KB2

row 1
row 2

row 3

KB_RAM

KB1

KB2

row 1
row 2

row 3

measured as the total area of the hardware. The results show that for
the same hardware cost, a narrower KB_RAM is faster. Figure 18
(b) shows the delay-cost-product of the different hardware
configurations. For the same cost, a narrower KB_RAM has higher
efficiency. A system with too many comparators or too few
comparators does not provide the best efficiency. For W=15B~6B, a
system with about 60 comparators is the most efficient in terms of
the delay and the cost.

Figure 18 Cost performance tradeoff for the recall system.

V. CONCLUSIONS AND FUTURE WORK

In this work we present our research on accelerating
confabulation based single sentence completion. Three topics have
been covered. They are (1) software optimization, (2) software
analysis and (3) architecture exploration. Our analysis shows that
the use of appropriate data structures can improve the performance
of the software by more than 5000X, and that the cogent
confabulation algorithm is an ideal candidate for parallel processing.
It also shows that although increasing the number of PEs or the size
of memories can increase the performance of training and recall, the
relation between hardware cost and performance associated with
these variations are not always linear. The details of hardware
configuration must be carefully considered to achieve good cost
performance tradeoffs. We suggest that this work can be extended to
more complex implementations of confabulation systems.

REFERENCES
[1] R. Hecht-Nielsen, “Confabulation Theory: The Mechanism of

Thought”, Springer, Aug. 2007.
[2] J. R. Anderson, “ACT: A simple theory of complex cognition,”

American Psychologist, Vol. 51, No. 4, pp. 355-365, 1996.
[3] J. Hawkins, S. Blakeslee, “On Intelligence,” Times Books, 2004.
[4] A. J. Anderson, “A Brain-Like Computer for Cognitive

Software Applications: The Ersatz Brain Project,” Proc. of IEEE
International Conference on Cognitive Informatics, Irvine CA, 2005.

[5] H. Moravec, “When Will Computer Hardware Match the
Human Brain?” Journal of Evolution and Technology, Vol. 1,
1998.

[6] P. Dubey, “Recognition, Mining and Synthesis Moves
Computer to the Era of Tera,” Technology Intel Magazine, pp.
1-10, February 2005.

[7] G. De Micheli, “Synthesis And Optimization of Digital
Circuits”, McGraw-Hill Inc., 1994

[8] M. A. Nuno-Maganda, M. Arias-Estrada, C. Torres-Huitzil,
“An Efficient Scalable Parallel Hardware Architecture for
Multilayer Spiking Neural Networks,” 3rd Southern Conference
on Programmable Logic, Feb. 2007.

[9] Q. Wu, Q. Qiu, R. Linderman, D. Burns, M. Moore, D.
Fitzgerald, “Architectural Design and Complexity Analysis of
Large-Scale Cortical Simulation on a Hybrid Computing
Platform,” Proc. of IEEE Symposium on Computational Intelligence
in Security and Defense Applications, 2007.

[10] W. Baek, J. Chung, C. Minh, C. Kozyrakis, and K. Olukotun,
“Towards Soft Optimization Techniques for Parallel Cognitive
Applications,” Proceedings of ACM symposium on Parallel
algorithms and architectures, June 2007.

[11] Codes ‘LexMaker.c’ and ‘TextReader.c’ by M. Moore, ITT
Systems, AFRL/IFTC, ‘cf.c’ by Dan Burns, AFRL/IFTC,
Rome, NY, and ‘conf.cpp’ by Q. Qiu, Binghamton Univ.

(a) Speedups versus cost (b) Hardware efficiency

1E+0

1E+1

1E+2

1E+3

1E+4

0.1 1 10 100 1000
Hardware cost

Sp
ee

du
ps

W=27KB
W=15B
W=6B
W=3B

V↓

1E+0

1E+1

1E+2

1E+3

1E+4

0.1 1 10 100 1000
Hardware cost

Sp
ee

du
ps

W=27KB
W=15B
W=6B
W=3B

V↓

V↓
1E+0

1E+2

1E+4

1E+6

1E+8

0.1 1 10 100 1000
Hardware cost

D
el

ay
-c

os
t-p

ro
du

ct

W=27KB W=15B
W=6B W=3B

V↓
1E+0

1E+2

1E+4

1E+6

1E+8

0.1 1 10 100 1000
Hardware cost

D
el

ay
-c

os
t-p

ro
du

ct

W=27KB W=15B
W=6B W=3B

